
Security Requirements Analysis for Large-scale

Distributed File Systems
*

Syed Naqvi
1
, Olivier Poitou

1
, Philippe Massonet

1
, Alvaro Arenas

2

1Centre of Excellence in Information and Communication Technologies (CETIC), Belgium
{syed.naqvi, olivier.poitou, philippe.massonet}@cetic.be

2CCLRC Rutherford Appleton Laboratory, UK

a.e.arenas@rl.ac.uk

Abstract. This paper presents an analysis of security requirements of large-

scale distributed file systems. Our objective is to identify their generic as well

as specific security requirements and to propose potential solutions that can be

employed to address these requirements. FileStamp – a multi-writer distributed

file system developed at CETIC is considered as a case study for this analysis.

This analysis yields that the existing range of security solutions can be em-

ployed to secure large-scale distributed file systems. However, they should be

holistically employed to triumph over the security chinks in the FileStamp’s

armor.

Keywords: security services, requirements analysis, highly scalable systems, distributed data

management.

1 Introduction

The exponential growth in the scale of distributed data management systems and

corresponding increase in the amount of data being handled by these systems require

efficient management of files by maintaining consistency, ensuring security, fault

tolerance and good performance in terms of availability and security. Read only sys-

tems such as CFS [1] are much easier to design as the time interval between meta-data

updates is expected to be relatively high. This allows the extensive use of caching,

since cached data is either seldom invalidated or kept until its expiry. Security in a

* This research work is supported by the European Network of Excellence Core-

GRID (project reference number 004265). The network aims at strengthening and

advancing scientific and technological excellence in the area of Grid and Peer-to-Peer

technologies. The CoreGRID webpage is located at www.coregrid.net

read-only system is also quite simple to implement. Digitally signing a single root

block with the administrator’s private key and using one-way hash functions allow

clients to verify the integrity and authenticity of all file system data. Finally, consis-

tency is hardly a problem as only a single user, the administrator, can modify the file

system.

Multi-writer file systems face a number of operational issues not found in the read

only systems. These issues include maintaining consistency between replicas, enforc-

ing access control, guaranteeing that update requests are authenticated and correctly

processed, and dealing with conflicting updates.

This paper is organized in the following manner: an overview of FileStamp distrib-

uted file system is presented in section 2. Its generic and specific security require-

ments are elaborated in section 3. Section 4 presents a detailed account of technolo-

gies that can be employed to address the security requirements of the FileStamp. Fi-

nally some conclusions are drawn in section 5.

2 FileStamp Architecture

FileStamp is a distributed file system developed at CETIC with the aim of finding a

solution to the problems encountered in multi-writer file systems. It is a highly scal-

able, completely decentralized multi-writer peer-to-peer file system. The current ver-

sion of the FileStamp is based on Pastis [2] architecture. It aims at making use of the

aggregate storage capacity of hundreds of thousands of PCs connected to the Internet

by means of a completely decentralized network. Replication allows persistent storage

in spite of a highly transient node population, while cryptographic techniques ensure

the authenticity and integrity of file system data.

Figure 1: FileStamp Layered Architecture

The layered architecture of FileStamp is shown in figure 1. Routing and data stor-

age are handled by the Pastry [3] routing protocol and the PAST [4] distributed hash

table (DHT). The good locality properties of Pastry/PAST allow Pastis to minimize

network access latencies, thus achieving a good level of performance when using a

relaxed consistency model. In Pastis, for a file system update to be valid, the user must

provide a certificate signed by the file owner which proves that he has write access to

that file.

The format of the Pastis certificate is shown in figure 2. This certificate is issued by

the file owner and it grants the write access to a given user. The expiration date allows

access revocation.

Figure 2: Pastis certificate format

Authentication of the certificate is performed by the DHT nodes and FS clients.

They verify both signatures when storing and/or retrieving a UCB (User Certificate

Block).

This certificate has two crucial problems. First, it always gives write permission to

its users whereas in a real life application, a user may only be given read permission

while accessing the file. Second, its format is not standardized. It does not correspond

with the format of the X.509 certificate and hence it renders compatibility problem

with the existing standard credentials. This issue is discussed in detail in section 4.1

3 Security Requirements of FileStamp

The security requirements of FileStamp are driven by the roadmap of Open Grid

Services Architecture (OGSA) [5]. OGSA security model casts security functions as

OGSA services. This strategy allows well-defined protocols and interfaces to be de-

fined for these services and permits an application to outsource security functionality

by using a security service with a particular implementation to fit its current need.

3.1 Generic Requirements

This is the set of security services that constitutes the fundamental requirements for

any data management system.

3.1.1. Authentication:

Authentication provides plug points for multiple authentication mechanisms and the

means for conveying the specific mechanism used in any given authentication opera-

tion. The authentication mechanism may be a custom authentication mechanism or an

industry-standard technology. The authentication plug point must be agnostic to any

specific authentication technology.

Authentication between two entities of FileStamp nodes means that each party es-

tablishes a level of trust in the identity of the other party. In practical use an authenti-

cation protocol sets up a secure communication channel between the authenticated

parties, so that subsequent messages can be sent without repeated authentication steps,

although it is possible to authenticate every message. The identity of an entity is typi-

cally some token or name that uniquely identifies the entity.

3.1.2. Authorization:

Authorization allows for controlling access to grid resources based on authorization

policies (i.e., who can access a resource, under what conditions) attached to each

service. It also allows for service requestors to specify invocation policies (i.e. who

does the client trust to provide the requested service). Authorization should accom-

modate various access control models and implementation.

In the grid environments, the virtual organisations (VOs) [6] introduce challenging

management and policy issues, resulting from often complex relationships between

local site policies and the goals of the VO with respect to access control, resource

allocation, and so forth. In particular, authorization solutions are needed that can em-

power FileStamp to set policies concerning how resources assigned to the community

are used without, however, compromising site policy requirements [7].

3.1.3. Availability:

Availability of a requested data item is an important performance parameter. A

well-known technique for improving availability in distributed systems is replication.

If multiple copies of data exist on independent nodes, then the chances of at least one

copy being accessible are increased. Aggregate data access performance will also tend

to increase, and total network load will tend to decrease, if replicas and requests are

reasonably distributed.

3.1.4. Confidentiality:

Confidentiality is the property that information does not reach unauthorized indi-

viduals, entities, or processes. It is achievable by a mechanism for ensuring that only

those entitled to see information or data have access to that information. The confiden-

tiality requirement includes point-to-point transport as well as store-and-forward

mechanisms.

3.1.5. Integrity:

Integrity is the assurance that information can only be accessed or modified by

those authorized to do so. Data integrity is a nontrivial problem especially when stor-

age hardware and networks are not perfect. Data loss and corruption must be timely

caught and swiftly fixed. As systems grow in size and complexity, problems may pass

unnoticed until recovery becomes difficult and expensive.

3.2 Specific Requirements

This is the set of security services that are specifically needed for FileStamp. These

services complement the generic set of security services and are needed to enhance the

quality of security of the data management system.

3.2.1. Resilience

Resilience is an important requirement as the grid links and nodes are very dynamic

in nature and may change over the time. FileStamp security architecture should remain

intact and should deliver the promised level of security assurances even if its composi-

tion changes over the time. The resilience provides an abstraction layer to hide the

architectural changes from the overall security architecture.

3.2.2. Data Lifecycle Management (DLM)

Data Lifecycle Management (DLM) is the process of managing data throughout its

lifecycle from conception until disposal across different storage media, within the

constraints of the entire process. The lifecycle is the time from the moment data is

created until it is deleted or stored indefinitely. Security assurances require spanning

the entire lifecycle of data. FileStamp should ensure that the data contents will be

protected from the malevolent entities throughout its lifecycle.

3.2.3. Fault Tolerance

Fault tolerance is a desirable feature especially when transfers of large data files

occur. Protocols such as GridFTP [8] allow for resuming transfers from the last byte

acknowledged. Overlay networks provide caching of transfers via store-and-forward

protocols. However, caching reduces performance of the overall data transfer and the

amount of data that can be cached is dependent on the storage policies at the interme-

diate network points.

4 Solutions for the FileStamp Security Requirements

In this section, solutions to the security requirements of FileStamp are provided.

The premier objective of this section is to identify the range of existing technologies

that can be employed in FileStamp. However, solutions to all the security require-

ments do not already exist. In situations where existing solutions are either inadequate

or non-existent, we have discussed the potential solutions and have given reference to

our ongoing work in that direction.

The aim of this approach is to workout new solutions which are needed for the se-

curity architecture of the grid data management systems without reinventing the wheel.

4.1 Authentication

Most of the current grid tools are built on Grid security Infrastructure (GSI) [9] or

Secure Hyper Text Transfer Protocol (HTTPS) [10], both of which use X.509 certifi-

cates [11] for securely establishing a grid identity [12].

Other schemes include PGP keys [13], SSH keys [14], and SPKI [15] keys and pro-

tocols. SPKI focuses on authorization certificates more than identity certificates. SSH

is primarily a private/public key mapping with no real attempt to provide global

names. The X.509 scheme has a small set of trusted third parties called Certification

Authorities (CAs). These CAs are used to sign identity certificates that contain sub-

scriber's public key. This improves the scaling properties of public key distribution in

that only the CA's public key needs to be distributed in an out-of-band secure manner.

In systems without a trusted third party, such as PGP, each key holder must find some

secure way of establishing the association of his identity with his public key, to each

party with which he wishes to establish authenticated communication. In the X.509

infrastructure, the individual subscriber’s public key can be transmitted in a public key

certificate as part of a TLS connection handshake and can be accepted as valid if the

certificate is signed by a trusted CA. Another feature of the X.509 infrastructure is that

it supports multiple independent CAs. In a Grid each site may chose which CAs it will

accept for binding domain names and public keys.

We recommend the use of X.509 infrastructure for FileStamp. It will not only

standardize its authentication mechanism (unlike owner’s issued certificates) but

also facilitate its interactions with the grid world. FileStamp with X.509 infra-

structure will be easily integrated with any grid platform. Initially, a local CA

can be created that will deliver the standard X.509 certificates to the bona fide

users of FileStamp. Later the certificates of other CAs (such as Belgian Grid CA

[16]) can be used for authentication purposes.

4.2 Authorization

FileStamp may simply employ local mapping of the users (like UNIX authorization

matrix). This mapping also serves as an access control check – access to the resource

is denied if the user is not listed in the local mapping configuration. In this scheme,

once the user is mapped to a local identity, local policy management and enforcement

mechanisms constrain the user’s actions to those allowed by local policy. This ap-

proach allows the local operating system to act as a sandbox. Thus, administrators can

use normal policy administration tools to configure policy.

This simple approach has the advantage of being easy for site administrators to un-

derstand and configure because it uses existing local policy management and en-

forcement mechanisms with which the administrator is presumably already familiar.

However, in the context of the grid environment, this approach has several shortcom-

ings (such as scalability, lack of expressiveness, consistency of policies, etc.).

These problems are addressed in the Community Authorization Service (CAS)

[17]. The idea behind the evolution of CAS is inspired from the Role Based Access

Control (RBAC) [18]. CAS allows for a separation of concerns between site policies

and VO policies. Specifically, sites can delegate management of a subset of their pol-

icy space to the VO. CAS provides a fine-grained mechanism for a VO to manage

these delegated policy spaces, allowing it to express and enforce expressive, consis-

tent policies across resources spanning multiple independent policy domains. CAS

implementations are built on the Globus [19], thus allowing for easy integration of

CAS with existing Grid deployments.

Other solutions include VOMS [20], Akenti [21], and PERMIS [22]. VOMS (Vir-

tual Organization Management Service) and CAS are similar architecturally in that

both issue policy assertions to a user that the user then presents to a resource for the

purpose of obtaining VO issued rights. The primary difference between the two sys-

tems is the level of granularity at which they operate. The policy about what member-

ships a user has is centralized in the VOMS server, but the policy regarding exactly

what rights those memberships grant is distributed among the sites. CAS assertions

provide the rights directly and do not need interpretation by the resource. This com-

plete centralization of policy can achieve better consistency especially in situations

where policies are changing dynamically.

Akenti and PERMIS, while having differences in implementation and features, are

architecturally similar in that they provide a resource with an authorization decision in

regards to a request. While the CAS implementations provide simple authorization

decision functionality, they are limited to supporting CAS policy assertions and do not

have as rich a feature set as either Akenti or PERMIS. It is possible that either of these

systems, with some modifications, could be used to provide resource-side functional-

ity for CAS (i.e., parse the CAS assertion and use it to authorize the user's request.)

We recommend the use of CAS with the implementation of a local authoriza-

tion server for FileStamp. Local authorization server would accept authorization

queries from request servers, apply all applicable local and community policies,

and return a yes or no answer. This authorization server would need to be highly

trusted by the resource server and highly available. This service could poten-

tially take CAS credentials, forwarded by the resource, and use their credentials

in making its decision, or it could contact the CAS server itself. Such a server

could be implemented by using Akenti or PERMIS.

4.3. Availability, Confidentiality, and Integrity

Grid technologies enable transparent access to a wider resource pool, across or-

ganizations as well as within organizations; they can be used as a building block to

realize stable, highly reliable execution environments. In such a complex environment,

policy-based autonomous control and dynamic mobility are keys to realizing systems

that are highly flexible and recoverable. Availability is often not considered in litera-

ture, when it comes to a model design. Nevertheless, in a production environment we

cannot expect user not having assurances regarding the availability of what they pay

for. GSI provides mechanisms to grant availability of data owned by a user on a re-

mote resource. These are achieved by means of secure communication protocols, such

as HTTPS. As far as services availability is concerned, Globus relies on a dedicated

module that manages a limited set of grid events.

 Use of some adequate encryption technologies is indispensable to guarantee the

secure communications across the grid nodes which assure the confidentiality and also

integrity. Encryption indirectly assures the availability too; however, the protection

against the denial of service attack is addressed in the security policy. There exist a

range of encryption technologies from HTTPS (where a layer of security is added on

the top of HTTP) to Secure Hash Algorithm (SHA) [23] (where it is computationally

difficult or impossible to hack and the integrity check – checksum – is also per-

formed).

Figure 1a: HTTPS Architecture

Figure 1 shows graphic representations of these two encryption schemes. In figure

1a, the layered architecture of HTTPS is shown. Figure 1b depicts how the SHA

works. The quick comparison of these two techniques show that SHA seems quite

powerful as it require considerable computing power to break the algorithm; however,

in the specific context of the grid applications notably FileStamp, we need to consider

the overhead incurred due to the encryption operations. Large datasets will consume

enormous computing cycles for the SHA processing and HTTPS may not be consid-

ered as dependable solution especially when network connections are not reliable.

Figure 1b: SHA Architecture

We recommend the use of encryption technology for FileStamp as the data

movements across the grid nodes will be subject to potential attacks if there will

be plain text data exchange between the nodes. However, the selection of some

specific encryption technology is a tricky issue that depends on the nature of data

(required security level of the data movement) and the affordability of the total

cost of the encryption algorithms. A simple technique such as HTTPS can be

employed for generic situations and some more powerful techniques can be used

for providing higher level of security assurances. SHA consumes enormous

amount of computing power but in return it provides highest security assur-

ances.

4.4. Resilience and Fault Tolerance

General trend for the attainment of resilience and fault tolerance in the distributed

systems is to maintain ample number of replicas of the dataset. When some node fails

then the load/job is transferred to some other node. The quality of service depends on

how efficiently the system recognizes the faulty nodes and how transparently the jobs

are migrated from the faulty nodes to working nodes without interrupting operations.

In order to assure resilience and fault tolerance features, FileStamp should be able to

negotiate the terms of security parameters with the nodes so that new replicas be cre-

ated if the set of nodes expands resulting in the need of more replicas; or failure of

some existing nodes bearing replica sets need to be compensated by generating new

replicas.

We recommend the phased approach (as mentioned in [24]) to deal with the

resilience and fault tolerance issue. According to this approach:

1. In Phase I, the service providers that need to interact are identified. It is gener-

ally assumed that this is undertaken through a manager entity – which is form-

ing the VO in order to undertake a particular activity.

2. In Phase II, the identified providers are asked to join the VO. This phase may

involve negotiation between the manager entity and the providers (or directly be-

tween the providers) to ensure that a Service Level Agreement (SLA) is estab-

lished between the entity and each provider (or directly between the providers).

3. In Phase III, the providers interact to perform the particular activity desired by

the manager entity.

A set of protocols is needed to perform these negotiations. Negotiation protocols

are the set of rules that govern the interaction. They are required to realize SLA-aware

resource management system.

We recommend the use of Service Negotiation and Acquisition Protocol (SNAP)

[25] as negotiations protocol. SNAP is structured around the negotiation of SLAs

to solve the negotiation problems at run-time. When SNAP is used to submit a

file transfer job to a community scheduler, the scheduler understands that a

transfer requires substantial storage space on the destination resource, and sub-

stantial network and endpoint I/O bandwidth during the transfer. The distrib-

uted applications (common in Grid environments) exacerbate the coordination

problems of community schedulers. Not only do SLAs coordinate use of re-

sources by mutually distrustful schedulers, they also coordinate the use of dis-

trustful resources for a single application goal. The file transfer emphasizes such

distributed goals by requiring real-time coordination of significant endpoint and

network capability.

4.5. Data Lifecycle Management (DLM)

Data lifecycle management (DLM) is a policy-based approach to managing the

flow of an information system's data throughout its life cycle – i.e. from creation and

initial storage to the time when it becomes obsolete and is deleted. Security assurances

require spanning the entire lifecycle of data. Existing Grids are already managing huge

quantities of data [26]. Since Grids maximize the utilization of computing resources,

their potential to generate new data and consume storage is very high, making storage

capacity and DLM critical issues. By targeting data to appropriate storage media (pri-

mary disk storage, secondary serial advanced technology attachment (ATA) storage,

tape, etc.) DLM solutions can influence on the overall protection of the data besides

significantly reducing the cost of Grid storage infrastructures. FileStamp should en-

sure that the data contents will be protected from the malevolent entities throughout its

lifecycle.

We recommend a two-tier approach to handle the DLM issue in the FileStamp

system:

First, the security policy should explicitly mention the desired lifecycle of the

data being managed by the FileStamp system. The dynamic nature of the grid

environments does not permit some rigid definition of any parameter including

security; however, the security policy of a VO is generally fixed for that VO and

hence the VOs using the FileStamp should include a formal description of the

stage where the data generated by the VO operations be destroyed from the

storage devices.

Second, FileStamp should also employ some secure storage management tech-

nique such as HSM (Hierarchical Storage Management) [27]. HSM is policy-

based management of file backup and archiving in a way that uses storage de-

vices economically and without the user needing to be aware of when files are

being retrieved from backup storage media. The hierarchy represents different

types of storage media, such as redundant array of independent disks systems,

optical storage, or tape, each type representing a different level of cost and speed

of retrieval when access is needed.

5. Conclusions

Global connectivity of computing and storage resources opens up the possibility of

misusing information to a degree never seen before. The objective to facilitate use of

these resources by protecting them against any misuse must, however, be realistic

given the current technical infrastructure. It is important that the security technologies

be integrated in these systems from the inception stage rather than considering them as

add-on optional features. Security issues should not be overlooked while designing

these systems as they are critical to the success of these scalable distributed systems.

In this paper, the security requirements of large-scale distributed file systems are

addressed. The FileStamp multi-writer distributed file system is considered as a case

study for this analysis. Various security requirements are identified and the potential

solutions corresponding to these requirements are proposed. However, it is important

to remember that the analysis of security requirements is a process, the risk and threat

pictures are always changing, and their analysis needs to be continuously updated. In

other words, overall infrastructure of large-scale distributed file systems should be

subject to constant review and upgrade, so that any security loophole can be plugged

as soon as it is discovered.

References

1. Dabek F., Kaashoek M., Karger D., Morris R., and Stoica I., Wide-Area Cooperative Stor-

age with CFS, In the proceedings of 18th ACM Symposium on Operating Systems Princi-

ples (SOSP’01), chateau Lake Louise, Banff, Canada, October 2001

2. INRIA Project PASTIS http://regal.lip6.fr/projects/pastis/pastis_fr.html

3. Rowstron A. and Druschel P., Pastry: Scalable, Distributed Object Location and Routing

for Large-Scale Peer-to-Peer Systems, Proceedings of the IFIP/ACM International Confer-

ence on Distributed Systems Platforms (Middleware), 2001, pp 329-350

4. Druschel P., and Rowstron A., Past: Persistent and Anonymous Storage in a Peer-to-Peer

Networking Environment, Proceedings of the 8th IEEE Workshop on Hot Topics in Operat-

ing Systems (HotOS-VIII)? 2001), pp. 65-70

5. Welch V., Siebenlist F., Foster I., Bresnahan J., Czajkowski K., Gawor J., Kesselman C.,

Meder S., Pearlman L., Tuecke S., Security for Grid Services, Proceedings of the 12th

IEEE International Symposium on High Performance Distributed Computing (HPDC’03),

2003

6. Foster I., Kesselman C., and Tuecke S., The Anatomy of the Grid: Enabling Scalable Vir-

tual Organizations. International Journal of High Performance Computing Application, 15

(3), pp. 200-222, 2001

7. Foster I., Kesselman C., Pearlman L., Tuecke S., and Welch V., The Community Authoriza-

tion Service: Status and Future, In Proceedings of Computing in High Energy Physics 03

(CHEP '03), La Jolla, California, USA, March 24-28, 2003

8. Allcock W. et al., GridFTP: Protocol extensions to FTP for the Grid, GGF Document

Series GFD.20, April 2003

9. Foster I., Kesselman C., Tsudik G., Tuecke S., A Security Architecture for Computational

Grids, ACM Conference Proceedings 1998, ISBN 1-58113-007-4, pp 83-92

10. Rescorla E., Hyper Text Transfer Protocol (HTTP) over Transport Layer Security (TLS),

Internet Engineering Task Force (IETF) draft RFC # 2818, May 2000

11. Chokhani S., Internet X.509 Public Key Infrastructure Certificate Policy and Certification

Practices Framework, Internet Engineering Task Force (IETF) draft RFC # 2527, March

1999

12. Thompson M., Olson D., Cowles R., Mullen S., Helm M., CA-based Trust Issues for Grid

Authentication and Identity Delegation, Global Grid Forum (GGF) Certification Authority

Operations Working Group Community Practices Document, Oct 2002

13. Garfinkel S., PGP: Pretty Good Privacy, O'Reilly & Associates, 1994

14. Barret D. and Silverman R., SSH: The Secure Shell, O'Reilly & Associates, 2001

15. Ellison C., SPKI Requirements, IETF RFC 2692 1999, http://www.ietf.org/rfc/rfc2692.txt

16. The Certification Authority of Belgian Grid Initiative – www.begrid.be/certification.htm

17. Pearlman L., Welch V., Foster I., Kesselman C., Tuecke S., A Community Authorization

Service for Group Collaboration., Proceedings of the IEEE 3rd International Workshop on

Policies for Distributed Systems and Networks, 2002

18. Ferraiolo D., Cugini J., and Kuhn D., Role Based Access Control (RBAC): Features and

Motivations, Proceedings of the 11th Computer Security Applications Conference, pp 241-

248, New Orleans, LA, USA, 11-15 December 1995

19. Foster I. and Kesselman C., Globus: A Metacomputing Infrastructure Toolkit, International

Journal of Supercomputer Applications, 11 (2). 115-129. 1998

20. VOMS Architecture v1.1, http://gridauth.infn.it/docs/VOMS-v1_1.pdf, May 2002.

21. Thompson M., Johnston W., Mudumbai S., Hoo G., Jackson K., and Essiari A., Certificate-

based Access Control for Widely Distributed Resources, 8th Usenix Security Symposium,

1999

22. Chadwick D. and Otenko A., The PERMIS X.509 Role Based Privilege Management Infra-

structure, 7th ACM Symposium on Access Control Models and Technologies, 2002

23. National Institute of Standards and Technology, Secure Hash Standard, Federal Informa-

tion

Processing Standards Publication 180-1, April 17, 1995

24. Olmedilla D., Rana O., Matthews B., and Nejdl W., Security and Trust Issues in Semantic

Grids, Proceedings of Schloss Dagstuhl Seminar no. 05271: Semantic Grid: The Conver-

gence of Technologies, Dagstuhl, Germany, July 03-08, 2005

25. Czajkowski K., Foster I., Kesselman C., Sander V., Tuecke S., SNAP: A Protocol for Nego-

tiating Service Level Agreements and Coordinating Resource Management in Distributed

Systems, Lecture Notes In Computer Science; Vol. 2537, Revised Papers from the 8th In-

ternational Workshop on Job Scheduling Strategies for Parallel Processing, pp 153-183,

ISBN:3-540-00172-7, 2002

26. Silicon Graphics Incorporate (SGI), SGI and Intel on the Grid – Unique Capabilities for

Grid Computing, Whitepaper, 2005

27. Watson, R., High Performance Storage System Scalability: Architecture, Implementation

and Experience, Proceedings of 22nd IEEE / 13th NASA Goddard Conference on Mass

Storage Systems and Technologies 2005, pp145-159, 11-14 April 2005

