
WSCG’2000 : 8-th Winter School of Computer Graphics, Plzen (Czech Republic), February 7-11, 2000

Laziness, a way to improve distributed computation of the ray tracing

algorithm

Olivier POITOU, Bernard LECUSSAN, Sébastien BERMES

ONERA-CERT/DTIM

2 Av. E. BELIN

31055 TOULOUSE Cedex

{poitou, lecussan, bermes}@cert.fr

ABSTRACT

This paper raises the issue of computational workload and memory load balancing to ray trace large scenes

efficiently on a network of workstations. The task splitting is done on the image to be produced and not on the

scene data to obtain a high performance level. To deal with the high memory requirements of such a

distribution strategy, laziness is added to the base algorithm. This reduces the computing local memory

requirements to the locally computed part of the image. It also reduces the sequential parts of the algorithm by

making the voxelization process parallel. Many comparisons have been done using a manager/worker

distribution algorithm on different scenes computed on a conventional network of workstations. Performance,

load imbalance, communication overhead, and memory requirement results are given and discussed in this

paper. Furthermore, this paper demonstrates that the proposed solution improves the results obtained with

conventional algorithms, no matter what network used or however complex the image is.

I. INTRODUCTION

Ray tracing is a realistic synthesis image rendering

technique which requires a high computing power

and a large amount of memory to compute realistic

images. Many papers have been proposed since

1980 to improve ray tracing algorithm computations

[GLA89,SCR97]. This algorithm exhibits naturally

a high degree of parallelism, considering

independent rays propagation or independent image

computation, but with irregular workload of

computation leading to inefficient usage of a

parallel computer. The well known improvement of

the base algorithm comes from space voxelisation

[AMW87] , but this single technique is not

sufficient for an efficient parallel computation.

Starting from an existing sequential algorithm, this

paper introduces a new method and associated

algorithms to compute ray tracing wave simulation

in parallel. Experiments are made with image

computing but the proposed solutions could be

applied in others area based on wave propagation

simulation (electromagnetism, seismic, etc.

[BER98]).

This paper starts with a quick presentation of

related researches in the field, pointing the main

drawbacks of the proposed approaches; then the

followed methodology bypasses these drawbacks

introducing additional algorithms, especially for

memory management and workload distribution.

Section II introduces the related works on the ray

tracing application parallelisation, section III

presents the proposed solutions to improve load

balancing and memory management of a distributed

computation, section IV explains experimental

conditions and the evaluation criteria choices,

section V exhibits the algorithms used and finally

section VI presents results obtained with a network

of workstations. The conclusion of the paper

presents a synthesis of the experiments and possible

extends to improve the validation of the proposed

algorithms.

II. RELATED WORKS

Two kind of parallelisation strategies of the ray

tracing algorithm are conventionally presented:

either distribute the database among the nodes

memory, called data oriented distribution, or

2

distribute the computation of all rays to each

computing node, called image oriented distribution.

With data oriented approach, each node owns only

one part of the model enabling the rendering of

large scene by static decomposition of the whole

data structure. It produces a higher communication

rate since the data for a ray computation is not in

the local memory. The communication overhead

leads to poor performance of the distributed

computation. [DMS84 and KNK88].

The image oriented approach gives best

performances but suffers a serious drawback, which

is the amount of required memory. Ideally, the

entire model and the voxel structure have to be

loaded in each local memory. The memory

requirements dramatically limits the maximum size

of the model that may be computed with algorithms

implementing this strategy. The Shared Virtual

Memory solution was proposed to distribute data

among all local storages in order to deal with the

model size limitation and to be able to compute

realistic cases. The solution implies higher

communication rate and consequently lower

performance if communication overhead is not

overlapped by efficient computation [BKP96].

Multithreading may be a solution to this problem

but strongly dependent on the scene structure.

In [PRM98], for instance, the Shared Memory

Model of the CRAY T3D is used to access to the

whole database from every node while only keeping

one copy of the database in the system. The memory

requirement is so reduced from N*DBsize to 1*DBsize

for N processors but the parallel computer efficiency

seems far from an optimum.

In [BBP94], an advanced algorithm is used, based

upon a shared memory emulation. Only the octree is

entirely stored in each local memory, the main

database is loaded on demand during the

computation. This solution, implemented on a high

performance multi-processor, strongly relies on the

network efficiency and doesn't seem so efficient on

a workstation network.

III. COMPUTING THE RAY TRACING

ALGORITHM ON A DISTRIBUTED

MEMORY COMPUTER

Previous works on parallel ray tracing computation

shows that the image oriented distribution strategy

with the model data entirely stored in each local

memory leads to efficient results but at the cost of a

large amount of memory. To solve this problem

some authors have proposed a Shared Virtual

Memory concept distributed on each local memory.

Thus, each node has a part of the model in its local

memory and is able to access the others parts, stored

in other local memory of each node via messages.

The fundamental parameters of the actual

technology implies that the access cost of a non-

local data via a network varies in the range of 4,000

to 40,000 processor cycles according to the

processor throughput, to the network latency and

the communication protocol overhead [SBJ99].

Such latency has to be overlapped by computing

effective code to reach efficient parallel

computation. Multithreaded implementation

minimizing the task communication costs or

speculative algorithms predicting code to be

computed are presented in previous papers. The

efficiency of those solutions strongly relies on the

technology and the

CPU_time/Communication_latency ratio.

Furthermore it seems very hard to find solutions

which are not dependent on the image complexity.

The strategy followed in the research presented here

aims to produce the smallest number of messages

possible while reducing memory requirement for

voxel storage. The main idea is to build the octree

dynamically on demand, only when and where the

part of the octree is needed [BLC99].

Voxelisation is usually achieved during the ray

tracing initialization. The model discretisation is

contained in the leaves of the produced octree

[GLA84]. Rays are then cast on the octree and

intersection computation is computed on the ending

voxels. The octree construction is a sequential task

that must be achieved before the task repartition.

The octree distribution is a bottleneck that

dramatically impacts the expected performance of

the parallel machine.

The lazy octree is a potentially infinite tree; voxels

have three different status :

• empty : the voxel contains no surfaces

• node : the voxel is not empty and its eight

children's voxels are already built

• leaf : the voxel is not empty, but its children

are not yet built

At the beginning of a simulation, i.e. before the first

ray is cast, the octree is reduced to a single leaf

voxel. Lazy evaluation will allow a leaf voxel to be

transformed into a node voxel : this process is called

voxel evaluation and it is done dynamically along

simulation. Each time a ray hits a voxel, it is to be

decided whether the polygon description of the

voxel is sufficient or not for an analytic

computation. This boundary depends on the number

of surfaces in the voxel, or on the relative size of the

voxel compared to the ray solid angle. If this

boundary is not reached, the intersection with all

WSCG’2000 : 8-th Winter School of Computer Graphics, Plzen (Czech Republic), February 7-11, 2000

children voxels along the ray path has to be

computed. If the voxel is a leaf voxel, it is evaluated

in order to transform it into a node voxel. In order

to avoid expensive tests during ray-voxel

intersection dynamic boundary conditions can flag a

voxel.

Contrarily to conventional methods using static

octrees, most voxels actually built were at least hit

by one ray, and no useless voxel was built. This can

result in large amounts of memory saves due to

hidden parts of a scene : as no ray cross those areas,

no voxels are built there. If the ray uses a solid

angle method to avoid a deeper exploration, it can

also save voxel construction in deep octree

branches.

This algorithm has interesting sequential properties

to save memory, as only the needed part of the

octree is built. Furthermore on a parallel computer

local data structure will be built inside each local

memory at the demand of the ray computed by each

processor. In that way, voxelisation process can be

distributed on each processor without any message.

The methodology of performance evaluation of the

proposed solution is summarized in four sets of results

obtained by :

1) A trivial algorithm of data distribution

which needs a large amount of memory

but without communication overhead.

2) An improved algorithm to improve the

load balancing of the distributed

computer without solving the memory

issue.

3) The implementation of the lazy algorithm

which reduces the amount of required

memory with static splitting of images

and dynamic distribution algorithm.

4) An improvement of the previous solution

with a dynamic splitting algorithm.

Comparisons will be done considering that

algorithm 1) gives the best solution at the

communication overhead point of view, then

solution 2) improves the load balance of the previous

solution; solution 3) gives an answer to reduce the

total amount of required memory and solution 4) is a

final optimization combining the main qualities of

each previous algorithms.

IV. EVALUATION CRITERIA

As the issue addressed by this paper is the efficiency

of the distributed computer, the main parameters to

be evaluated are the load imbalance of the parallel

algorithm, the memory required by the solution on

each processor and the speedup gained by the

parallel computation.

Let the parallel computation time Tp expressed by

the following formula :

Tp = max
i
 ti (1)

where i indexes the set of computers and ti is the i-

th computer computation time.

The parallel computer efficiency E using p

processor is :

E =
Ts

p x Tp
 (2)

where Ts is the best sequential algorithm known to

solve the problem.

A minimum of the computation imbalance occurs

when all computers complete their work at the same

time. In this case, this minimum occurs at :

Tmin= Tseq +
Tpar

p
 (3)

where Tseq and Tpar respectively are the non-

parallelisable and the parallelisable part of the

sequential computation time (Amdahl’s law,

performance improvement to be gained from using

faster mode of execution is limited by the fraction of

the time the faster mode can be used). This suggests

an objective function to measure the effectiveness of

any candidate solution S to any instance of the load-

balancing problem. The quality of S can be

measured by the ratio of imbalance that it produces

and can be expressed by the following formula :

Load Imbalance =
Tp - Tmin

Tmin
 (4)

The efficiency of the proposed solution will be

demonstrated by the evaluation of E (Eq. 2) then the

evaluation of the Load Imbalance (Eq. 4), and the

amount of required memory to implement the

solution.

At a coarse grain, the algorithm behavior is :

Part 1 : Initiate the parallel execution and read

the model data

Part 2 : Distribute the model voxelisation

Part 3 : Compute the image

Part 4 : Write the output image file and end

Part 1 and Part 4 are Input/Output operations and

are not considered in this paper. Part 2 and Part 3

are concerned by load balancing strategies and

computation time evaluations. On previous

approaches Part 2 is fully sequential and Part 3 is

4

entirely parallelisable, so the formula (Eq. 3)

applied to the ray tracing computation becomes :

Tmin = Tpart2+
TSpart3

p
 (5)

where TSpart3 is the execution time of Part 3 on a

uniprocessor computer. This formulation shows

that, as the number of processors p increases, the

efficiency of the parallel computer is very sensitive

to the value of Tpart2. For example, the efficiency of

a computer with 100 processors drops to 0.5 if

Tpart2 represents only 1% of the total execution

time. In this paper a solution to distribute

voxelisation is presented in order to reduce

significantly the sequential part of the algorithm.

The communication ratio indicates the cost of the

parallelization algorithm.

Results were obtained using 16 Sun workstations

(Ultra 10 with 256 Mo of memory) interconnected by

an Ethernet 100 Mb/s network. An additional

validation on a PC cluster with Myrinet is in progress,

to show the independence of the proposed solution to

the technology.

MPI ver. 1.1 [MPI2] will be used to distribute the

computation.

V. ALGORITHM DESCRIPTIONS

1. The trivial repartition algorithm

A first trivial algorithm will be used to spot the

issue raised by the ray tracing parallelisation and

will be referred to for the coming improved

algorithm evaluations.

The image is uniformly split into as many blocks as

computing resources. The octree is entirely built at

the beginning of the computation by each node to

avoid communication during this step. Each node

hence has the entire model and voxelisation

information in its local memory; so the computation

is achieved without communication. The

computation ends when the workload heaviest block

is computed.

The measured efficiencies of the static trivial

algorithm shows that global computation time gets

far higher than desirable as the number of nodes

increases (Figure 1, Figure 5, Figure 9).

The high load imbalance values confirm the ray

tracing algorithm irregularity (Figure 2, Figure 6,

Figure 10). The differences between node

computation times are significant (they have

reached 40 seconds for a global execution time of

120 s), showing an important load imbalance

between nodes. As limiting the computation time

imbalance is a key issue to performance, this will be

the first problem to address.

Furthermore the local memory requirement is

constant and maximum whatever the number of

nodes is; memory is not distributed at all. The

memory requirement for each node is the same as

on the single node of a sequential computer. This

memory waste is the second point to improve.

The only positive aspect of this first trivial

algorithm is that it does not need any

communication. In fact, the parallel computer rate

is unacceptable while there is no communication

overhead.

2. Improving load-balancing by a dynamic

distribution of the blocks

To deal with the irregularity of the ray tracing

application, a first improvement is to achieve a

thinner static splitting of the image and a dynamic

distribution of the blocks. The algorithm is :

• At the master node

// let N be the number of processors

Split_image(block_size)

// with block_size adjusted to obtain number of

// blocks >> N

For i=1..N Assign(a_Block, node(i))

// this was the assignment of the first N blocks

While non_computed_blocks_remain

Wait_a_job_termination

Assign(a_new_block, node(requester))

End While

For i=1..N Send(termination_signal, node(i))

• At each slave node

Wait_for_a_job(job)

While not_the_termination_signal

Compute(job)

Send(job_termination, master_node)

Wait_for_a_job(job)

End While

This should improve the load balancing, but the

local memory requirement problem is not addressed

yet.

WSCG’2000 : 8-th Winter School of Computer Graphics, Plzen (Czech Republic), February 7-11, 2000

3. Saving memory and reducing

computation : the lazy ray tracing

3.1. The lazy algorithm

Inside each processor, the algorithm is the

following :

Propagate(rays)

For each rays

Intersection(ray,octree_root)

If (intersection<>nil)

Apply Snell Descartes laws to determine

secondary rays

If (secondary_rays<>nil)

Propagate(secondary_rays)

End if

End if

End for

End Propagate.

The algorithm of the lazy recursive function

Intersection is :

Intersection(ray,octree_elt)

// First step : Actions on the octree element if it

// is a leaf

If is_a_leaf(octree_elt)

If boundary_conditions(octree_elt)

// there is no need to explore deeper

If (object_list(octree_elt)<>nil)

// the element contains surfaces

Flag_as_terminal_node(octree_elt);

Else

// the element contains no surface

Flag_as_empty(octree_elt);

End if

Else

// deeper exploration is necessary

Flag_as_node(octree_elt);

Create_leaf_sons(octree_elt);

End if

End if

// Second step : Action to take according to the

// flag of the element as it can no more be a leaf

Case

is_empty(octree_elt) :

return(nil);

is_a_node(octree_elt) :

if is_a_terminal_node

compute_intersection;

else

return merge(
if hit_by_ray Intersection(ray,son1(octree_elt) else

nil,

if hit_by_ray Intersection(ray,son2(octree_elt) else

nil,

if hit_by_ray Intersection(ray,son3(octree_elt) else

nil,

if hit_by_ray Intersection(ray,son4(octree_elt) else

nil,

if hit_by_ray Intersection(ray,son5(octree_elt) else

nil,

if hit_by_ray Intersection(ray,son6(octree_elt) else

nil,

if hit_by_ray Intersection(ray,son7(octree_elt) else

nil,

if hit_by_ray Intersection(ray,son8(octree_elt) else

nil)

End if

End Case

End Intersection

This algorithm shows the following properties: first,

a child node is evaluated only if it contains

necessary data for the computation; then, the node

evaluation results is definitively stored in the octree

and will be reused for neighbor ray computation.

Thereby, the algorithm exploits spatial ray

coherence.

6

The main drawback of the algorithm is the

remaining data replication. Although it is reduced

by a proximity support in the assigned ray choice

for each node, some rays assigned to different nodes

may need common voxel evaluation and generate

data duplication. This cost is to be evaluated as it

strongly relies on the considered application.

3.2. Static splitting, dynamic distribution

algorithm

The hybrid algorithm uses the repartition algorithm

introduced in section V.2, a nearest new block

choice and a static image splitting. It has been

tested with and without implementing the lazy

evaluation; it leads to the following results :

Efficiencies are better than the previous one

especially when the number of nodes increases, lazy

evaluation does not significantly interfere on

performance (Figure 1, Figure 5, Figure 9).

The repartition quality of the hybrid algorithm

evolves linearly. Its values are always lower than

those of the trivial algorithm. The two versions

obtain the same results. (Figure 2, Figure 6,

Figure 10).

The local memory requirement is the first point

where laziness has a significant impact. The non

lazy version obtains the same results as the first

trivial algorithm with a constant and maximal

memory requirement for all test configurations. On

the opposite, the lazy algorithm offers decreasing

memory requirements as the number of nodes

increases. The memory requirement decreasing rate

is about 20% each time the number of nodes

doubles (Figure 3, Figure 7, Figure 11). The

memory is now distributed among the computing

nodes thanks to the laziness added to the base

algorithm. On the last gen8 test an important

memory requirement reduction can be observed on

the sequential lazy execution. It is due to useless

parts of the octree evaluated by the classic algorithm

and not by the lazy algorithm (Figure 11).

The introduced communication is correct for gen8

test (Figure 12), just acceptable for teapot12 test

(Figure 4) and clearly too high for tetra9 test

(Figure 8). The results are the same on both

versions of the hybrid algorithm.

Results indicate a sensible execution time

improvement with both versions of the hybrid

algorithm and a significant memory saving with the

lazy version. Lazy evaluation solution always leads

to memory requirements and execution time

improvements on parallel machines but also on

sequential machines when the computed scene

contains hidden parts.

4. Dynamic image splitting

However, using both dynamic splitting and dynamic

repartition improves data and computation locality.

Moreover it may reduce the data replication too.

Computing a single large block instead of the four

smaller blocks that compose it, ensures this

computation is done by a single node. It really takes

advantage of the locality and it also fully uses the

original sequential algorithm efficiency. Moreover it

reduces the number of needed messages. But it may

involve a greater execution time imbalance between

nodes being assigned blocks that generates very

different workloads.

On the opposite, the use of small blocks often

implies more data replication and generates more

messages. But it induces very close execution times

which means load balancing improvement.

To take advantage of both large and small blocks

the following dynamic splitting and dynamic

repartition algorithm is used :

// let N be the number of processors

// let NS be the number of different block sizes

Dynamic_repartition()

// first splitting/repartition

Block_side = Image_side / N;

Split(Image,Block_side); // N*N blocks created

Distribute N blocks

// start the loop

While it_stays_blocks_to_compute

// wait and count for achieved blocks

Wait_for_a_job_termination;

Assign(a_new_block, requesting_node);

Waited_blocks = Waited_blocks - 1;

// if conditions true prepare next block size

If (Waited_blocks = 0 and Block_side ≥
minimum_side)

Then

// prepare the next block size

Block_side = Block_side / reduction_factor;

Split(Image,Block_side);

// schedule the re-split

Blocks_before_resplitting = blocks to cover

 1/NS of the image surface;

Waited_blocks = Blocks_before_resplitting;

End if

End While

End Dynamic_repartition

The minimum size of a block must be chosen to

ensure that the communication time for the block

will never be greater than its computation time; so

evaluating it remotely would cost more than

evaluating it locally [HLL96].

WSCG’2000 : 8-th Winter School of Computer Graphics, Plzen (Czech Republic), February 7-11, 2000

An efficiency improvement can be observed in

particular when the number of node increases

(Figure 1, Figure 5, Figure 9). Efficiency is almost

linear with a value of 0.93 on the 16 node

configuration of teapot12 test (Figure 1).

The load imbalance values are a bit lower than

previous ones when the number of node increases.

Therefore starting he computation with larger

blocks do not impact the load-balancing (Figure 2,

Figure 6, Figure 10).

The memory requirements are the same as those of

the lazy hybrid algorithm (Figure 3, Figure 7,

Figure 11).

Communication ratio have been hardly reduced

(Figure 4, Figure 8, Figure 12).

VI. RESULTS

The presented results correspond to the three

following scenes (Table 1 :Test scenes).

Sequential computation

time Scenes

Model

size

(in MB)

Number of

surfaces
Picture size

Non lazy Lazy

Teapot12 1.19 9,408 2048x2048 220 s 163 s

Tetra9 18.24 262,144 2048x2048 194 s 155 s

Gen8 26.21 786,438 1024x1024 793 s 201 s

Table 1 :Test scenes

The two first scenes are part of the well known

SPD, the last one is proprietary. Due to paper size

limitation only three tests are presented. Results are

presented in the following pages.

VII. CONCLUSION

Efficient parallel solutions on workstation networks

must reduce communications to the minimum, as

they constitute a very important overhead. However

this reduction implies more local data knowledge

and thus more local memory requirements. The use

of a lazy evaluation base algorithm leads to a

natural memory repartition among the computing

nodes and implies a lot less communications while

computing complex scenes with a high level of

performance.

Lazy evaluation benefit might be contested because

it can be annihilated in the case of scene with

reflecting surfaces imposing a lot of rays to cross

the entire scene. However, even in the worst

theoretical case in which the whole data set would

be needed on each node, the lazy evaluation would

not perform worse then classical solution but would

be absolutely equivalent to it.

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14 16

E
ffi

ci
en

cy

Number of stations

Dynamic Algorithm with laziness
Hybrid Algorithm with Laziness

Hybrid Algorithm without Laziness
Static Algorithm without Laziness

Figure 1 : Teapot12 algorithm efficiencies

0

20

40

60

80

100

2 4 6 8 10 12 14 16

Lo
ad

 im
ba

la
nc

e
(in

 %
)

Number of stations

Dynamic Algorithm with laziness
Hybrid Algorithm with Laziness

Hybrid Algorithm without Laziness
Static Algorithm without Laziness

Figure 2 : Teapot12 algorithm load imbalance ratio

0

2

4

6

8

10

2 4 6 8 10 12 14 16

A
ve

ra
ge

 M
em

or
y

ne
ed

s
(in

 M
B

)

Number of stations

Dynamic Algorithm with laziness
Hybrid Algorithm with Laziness

Hybrid Algorithm without Laziness
Static Algorithm without Laziness

0

20

40

60

80

100

2 4 6 8 10 12 14 16

C
om

m
un

ic
at

io
n

ra
tio

 (
in

 %
)

Number of stations

Dynamic Algorithm with laziness
Hybrid Algorithm with Laziness

Hybrid Algorithm without Laziness

8

Figure 3 : Teapot12 local memory requirement Figure 4 : Teapot12 communication ratio

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

E
ffi

ci
en

cy

Number of stations

Dynamic Algorithm with laziness
Hybrid Algorithm with Laziness

Hybrid Algorithm without Laziness
Static Algorithm without Laziness

Figure 5 : Tetra9 algorithm efficiencies

0

50

100

150

200

250

300

2 4 6 8 10 12 14 16

Lo
ad

 im
ba

la
nc

e
(in

 %
)

Number of stations

Dynamic Algorithm with laziness
Hybrid Algorithm with Laziness

Hybrid Algorithm without Laziness
Static Algorithm without Laziness

Figure 6 : Tetra9 algorithm load imbalance ratio

0

20

40

60

80

100

2 4 6 8 10 12 14 16

A
ve

ra
ge

 M
em

or
y

ne
ed

s
(in

 M
B

)

Number of stations

Dynamic Algorithm with laziness
Hybrid Algorithm with Laziness

Hybrid Algorithm without Laziness
Static Algorithm without Laziness

Figure 7 : Tetra9 local memory requirement

0

20

40

60

80

100

2 4 6 8 10 12 14 16

C
om

m
un

ic
at

io
n

ra
tio

 (
in

 %
)

Number of stations

Dynamic Algorithm with laziness
Hybrid Algorithm with Laziness

Hybrid Algorithm without Laziness

Figure 8 : Tetra9 communication ratio

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

E
ffi

ci
en

cy

Number of stations

Dynamic Algorithm with laziness
Hybrid Algorithm with Laziness

Hybrid Algorithm without Laziness
Static Algorithm without Laziness

Figure 9 : Gen8 algorithm efficiencies

0

20

40

60

80

100

2 4 6 8 10 12 14 16

Lo
ad

 im
ba

la
nc

e
(in

 %
)

Number of stations

Dynamic Algorithm with laziness
Hybrid Algorithm with Laziness

Hybrid Algorithm without Laziness
Static Algorithm without Laziness

Figure 10 : Gen8 algorithm load imbalance ratio

WSCG’2000 : 8-th Winter School of Computer Graphics, Plzen (Czech Republic), February 7-11, 2000

0

20

40

60

80

100

120

140

160

180

2 4 6 8 10 12 14 16

A
ve

ra
ge

 M
em

or
y

ne
ed

s
(in

 M
B

)

Number of stations

Dynamic Algorithm with laziness
Hybrid Algorithm with Laziness

Hybrid Algorithm without Laziness
Static Algorithm without Laziness

Figure 11 : Gen8 local memory requirement

0

2

4

6

8

10

2 4 6 8 10 12 14 16

C
om

m
un

ic
at

io
n

ra
tio

 (
in

 %
)

Number of stations

Dynamic Algorithm with laziness
Hybrid Algorithm with Laziness

Hybrid Algorithm without Laziness

Figure 12 : Gen8 communication ratio

VIII. References

[GLA89] Glassner, Andrew. An Introduction to Ray

Tracing. Palo Alto C.A. : Academic Press 1989

[SCR97] Schutt, Robert. Ray tracing 101. Colgate

University Department of Natural Sciences Ray

Tracing on Parallel Microprocessors.

[AMW87] John Amanatides, Andrew Woo. A fast

Voxel Traversal Algorithm for Ray tracing.

Proceedings of Eurographics 1987

[BER98] Sébastien Bermes, Les arbres octaux

paresseux : une méthode dynamique de subdivision

spatiale pour le lancer de rayons. Thesis, 1998.

[DMS84] Dippé M.A.Z & Swensen J. An adaptative

subdivision algorithm and parallel architecture for

realistic image synthesis. Christiansen ed.,

Computer Graphics (SIGGRAPH ’84 proceedings),

Vol.18, p.149-158, 1984

[KNK88] Kobobayashi H., Nishimura S., Kubota

H., Nakamura T. & Shigei Y. Load balancing

strategies for a parallel raytracing system based on

constant subdivision, The Visual Computer 4(4),

1988.

[BKP96] R.Bianchini, L.I. Kontothanassis, R.Pinto,

M. De Maria, M.Abud and C.L. Amorim. Hiding

Communication Latency and coherence overhead in

Sofware DSMs.

[PRM98] Igor-Sunday Panzic, Michel

Roethlisberger, Nadia Magnetat Thalmann. Parallel

raytracing on the IBM SP2 and CRAY T3D.

MIRALab Copyright Information 1998.

[BBP94] Badouel D., Bouatouch K., Priol T.

Distributing data and control for Ray Tracing.

Computer Graphics and Applications, p.69-77,

1994.

[SBJ99] J.P. Singh, A. Bilas, D. Jiang and Y. Zhou.

Limits to the performance of Software Shared

Memory : A Layered Approach. 1999

[BLC99] Bermes Sébastien, Lécussan Bernard,

Coustet Christophe. MaRT : Lazy Evaluation for

Parallel Ray Tracing. High Performance Cluster

Computing, Vol.2, Programming and applications.

[GLA84] Andrew S. Glassner. Space subdivision

for fast Ray-Tracing. IEEE Computer Graphics and

Applications, Vol.4, N. 10., pp 15-22, Oct. 84

[MPI2] MPI : A Message-Passing Interface

Standard. June 12, 1995

[HLL96] Tsan-Sheng Hsu, Joseph C. Lee, Dian Rae

Lopez, William A. Royce. Task Allocation on a

Network of Processors. 1996.

