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ABSTRACT 

This paper raises the issue of computational workload and memory load balancing to ray trace large scenes 

efficiently on a network of workstations. The task splitting is done on the image to be produced and not on the 

scene data to obtain a high performance level. To deal with the high memory requirements of such a 

distribution strategy, laziness is added to the base algorithm. This reduces the computing local memory 

requirements to the locally computed part of the image. It also reduces the sequential parts of the algorithm by 

making the voxelization process parallel. Many comparisons have been done using a manager/worker 

distribution algorithm on different scenes computed on a conventional network of workstations. Performance, 

load imbalance, communication overhead, and memory requirement results are given and discussed in this 

paper. Furthermore, this paper demonstrates that the proposed solution improves the results obtained with 

conventional algorithms, no matter what network used or however complex the image is. 

 

I. INTRODUCTION 

Ray tracing is a realistic synthesis image rendering 

technique which requires a high computing power 

and a large amount of memory to compute realistic 

images. Many papers have been proposed since 

1980 to improve ray tracing algorithm computations 

[GLA89,SCR97]. This algorithm exhibits naturally 

a high degree of parallelism, considering 

independent rays propagation or independent image 

computation, but with irregular workload of 

computation leading to inefficient usage of a 

parallel computer. The well known improvement of 

the base algorithm comes from space voxelisation 

[AMW87] , but this single technique is not 

sufficient for an efficient parallel computation. 

Starting from an existing sequential algorithm, this 

paper introduces a new method and associated 

algorithms to compute ray tracing wave simulation 

in parallel. Experiments are made with image 

computing but the proposed solutions could be 

applied in others area based on wave propagation 

simulation (electromagnetism, seismic, etc. 

[BER98]). 

This paper starts with a quick presentation of 

related researches in the field, pointing the main 

drawbacks of the proposed approaches; then the 

followed methodology bypasses these drawbacks 

introducing additional algorithms, especially for 

memory management and workload distribution. 

Section II introduces the related works on the ray 

tracing application parallelisation, section III 

presents the proposed solutions to improve load 

balancing and memory management of a distributed 

computation, section IV explains experimental 

conditions and the evaluation criteria choices, 

section V exhibits the algorithms used and finally 

section VI presents results obtained with a network 

of workstations. The conclusion of the paper 

presents a synthesis of the experiments and possible 

extends to improve the validation of the proposed 

algorithms. 

II. RELATED WORKS 

Two kind of parallelisation strategies of the ray 

tracing algorithm are conventionally presented: 

either distribute the database among the nodes 

memory, called data oriented distribution, or 
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distribute the computation of all rays to each 

computing node, called image oriented distribution. 

With data oriented approach, each node owns only 

one part of the model enabling the rendering of 

large scene by static decomposition of the whole 

data structure. It produces a higher communication 

rate since the data for a ray computation is not in 

the local memory. The communication overhead 

leads to poor performance of the distributed 

computation. [DMS84 and KNK88]. 

The image oriented approach gives best 

performances but suffers a serious drawback, which 

is the amount of required memory. Ideally, the 

entire model and the voxel structure have to be 

loaded in each local memory. The memory 

requirements dramatically limits the maximum size 

of the model that may be computed with algorithms 

implementing this strategy. The Shared Virtual 

Memory solution was proposed to distribute data 

among all local storages in order to deal with the 

model size limitation and to be able to compute 

realistic cases. The solution implies higher 

communication rate and consequently lower 

performance if communication overhead is not 

overlapped by efficient computation [BKP96]. 

Multithreading may be a solution to this problem 

but strongly dependent on the scene structure. 

In [PRM98], for instance, the Shared Memory 

Model of the CRAY T3D is used to access to the 

whole database from every node while only keeping 

one copy of the database in the system. The memory 

requirement is so reduced from N*DBsize to 1*DBsize 

for N processors but the parallel computer efficiency 

seems far from an optimum. 

In [BBP94], an advanced algorithm is used, based 

upon a shared memory emulation. Only the octree is 

entirely stored in each local memory, the main 

database is loaded on demand during the 

computation. This solution, implemented on a high 

performance multi-processor, strongly relies on the 

network efficiency and doesn't seem so efficient on 

a workstation network. 

III. COMPUTING THE RAY TRACING 

ALGORITHM ON A DISTRIBUTED 

MEMORY COMPUTER 

Previous works on parallel ray tracing computation 

shows that the image oriented distribution strategy 

with the model data entirely stored in each local 

memory leads to efficient results but at the cost of a 

large amount of memory. To solve this problem 

some authors have proposed a Shared Virtual 

Memory concept distributed on each local memory. 

Thus, each node has a part of the model in its local 

memory and is able to access the others parts, stored 

in other local memory of each node via messages. 

The fundamental parameters of the actual 

technology implies that the access cost of a non-

local data via a network varies in the range of 4,000 

to 40,000 processor cycles according to the 

processor throughput, to the network latency and 

the communication protocol overhead [SBJ99]. 

Such latency has to be overlapped by computing 

effective code to reach efficient parallel 

computation. Multithreaded implementation 

minimizing the task communication costs or 

speculative algorithms predicting code to be 

computed are presented in previous papers. The 

efficiency of those solutions strongly relies on the 

technology and the 

CPU_time/Communication_latency ratio. 

Furthermore it seems very hard to find solutions 

which are not dependent on the image complexity. 

The strategy followed in the research presented here 

aims to produce the smallest number of messages 

possible while reducing memory requirement for 

voxel storage. The main idea is to build the octree 

dynamically on demand, only when and where the 

part of the octree is needed [BLC99]. 

Voxelisation is usually achieved during the ray 

tracing initialization. The model discretisation is 

contained in the leaves of the produced octree 

[GLA84]. Rays are then cast on the octree and 

intersection computation is computed on the ending 

voxels. The octree construction is a sequential task 

that must be achieved before the task repartition. 

The octree distribution is a bottleneck that 

dramatically impacts the expected performance of 

the parallel machine. 

The lazy octree is a potentially infinite tree; voxels 

have three different status : 

• empty : the voxel contains no surfaces 

• node : the voxel is not empty and its eight 

children's voxels are already built 

• leaf : the voxel is not empty, but its children 

are not yet built 

At the beginning of a simulation, i.e. before the first 

ray is cast, the octree is reduced to a single leaf 

voxel. Lazy evaluation will allow a leaf voxel to be 

transformed into a node voxel : this process is called 

voxel evaluation and it is done dynamically along 

simulation. Each time a ray hits a voxel, it is to be 

decided whether the polygon description of the 

voxel is sufficient or not for an analytic 

computation. This boundary depends on the number 

of surfaces in the voxel, or on the relative size of the 

voxel compared to the ray solid angle. If this 

boundary is not reached, the intersection with all 



WSCG’2000 : 8-th Winter School of Computer Graphics, Plzen (Czech Republic), February 7-11, 2000 

 

children voxels along the ray path has to be 

computed. If the voxel is a leaf voxel, it is evaluated 

in order to transform it into a node voxel. In order 

to avoid expensive tests during ray-voxel 

intersection dynamic boundary conditions can flag a 

voxel. 

Contrarily to conventional methods using static 

octrees, most voxels actually built were at least hit 

by one ray, and no useless voxel was built. This can 

result in large amounts of memory saves due to 

hidden parts of a scene : as no ray cross those areas, 

no voxels are built there. If the ray uses a solid 

angle method to avoid a deeper exploration, it can 

also save voxel construction in deep octree 

branches. 

This algorithm has interesting sequential properties 

to save memory, as only the needed part of the 

octree is built. Furthermore on a parallel computer 

local data structure will be built inside each local 

memory at the demand of the ray computed by each 

processor. In that way, voxelisation process can be 

distributed on each processor without any message. 

The methodology of performance evaluation of the 

proposed solution is summarized in four sets of results 

obtained by : 

1) A trivial algorithm of data distribution 

which needs a large amount of memory 

but without communication overhead. 

2) An improved algorithm to improve the 

load balancing of the distributed 

computer without solving the memory 

issue. 

3) The implementation of the lazy algorithm 

which reduces the amount of required 

memory with static splitting of images 

and dynamic distribution algorithm. 

4) An improvement of the previous solution 

with a dynamic splitting algorithm. 

Comparisons will be done considering that 

algorithm 1) gives the best solution at the 

communication overhead point of view, then 

solution 2) improves the load balance of the previous 

solution; solution 3) gives an answer to reduce the 

total amount of required memory and solution 4) is a 

final optimization combining the main qualities of 

each previous algorithms. 

IV. EVALUATION CRITERIA 

As the issue addressed by this paper is the efficiency 

of the distributed computer, the main parameters to 

be evaluated are the load imbalance of the parallel 

algorithm, the memory required by the solution on 

each processor and the speedup gained by the 

parallel computation. 

Let the parallel computation time Tp expressed by 

the following formula : 

Tp = max
i
 ti (1) 

where i indexes the set of computers and ti is the i-

th computer computation time. 

The parallel computer efficiency E using p 

processor is : 

E = 
Ts

p x Tp
 (2) 

where Ts is the best sequential algorithm known to 

solve the problem. 

A minimum of the computation imbalance occurs 

when all computers complete their work at the same 

time. In this case, this minimum occurs at : 

Tmin= Tseq + 
Tpar

p
 (3) 

where Tseq and Tpar respectively are the non-

parallelisable and the parallelisable part of the 

sequential computation time (Amdahl’s law, 

performance improvement to be gained from using 

faster mode of execution is limited by the fraction of 

the time the faster mode can be used). This suggests 

an objective function to measure the effectiveness of 

any candidate solution S to any instance of the load-

balancing problem. The quality of S can be 

measured by the ratio of imbalance that it produces 

and can be expressed by the following formula : 

Load Imbalance = 
Tp - Tmin

Tmin
 (4) 

The efficiency of the proposed solution will be 

demonstrated by the evaluation of E (Eq. 2) then the 

evaluation of the Load Imbalance (Eq. 4), and the 

amount of required memory to implement the 

solution. 

At a coarse grain, the algorithm behavior is : 

Part 1 : Initiate the parallel execution and read 

the model data 

Part 2 : Distribute the model voxelisation 

Part 3 : Compute the image 

Part 4 : Write the output image file and end 

Part 1 and Part 4 are Input/Output operations and 

are not considered in this paper. Part 2 and Part 3 

are concerned by load balancing strategies and 

computation time evaluations. On previous 

approaches Part 2 is fully sequential and Part 3 is 
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entirely parallelisable, so the formula (Eq. 3) 

applied to the ray tracing computation becomes :  

Tmin = Tpart2+
TSpart3

p
 (5) 

where TSpart3 is the execution time of Part 3 on a 

uniprocessor computer. This formulation shows 

that, as the number of processors p increases, the 

efficiency of the parallel computer is very sensitive 

to the value of Tpart2. For example, the efficiency of 

a computer with 100 processors drops to 0.5 if 

Tpart2 represents only 1% of the total execution 

time. In this paper a solution to distribute 

voxelisation is presented in order to reduce 

significantly the sequential part of the algorithm. 

The communication ratio indicates the cost of the 

parallelization algorithm. 

Results were obtained using 16 Sun workstations 

(Ultra 10 with 256 Mo of memory) interconnected by 

an Ethernet 100 Mb/s network. An additional 

validation on a PC cluster with Myrinet is in progress, 

to show the independence of the proposed solution to 

the technology. 

MPI ver. 1.1 [MPI2] will be used to distribute the 

computation. 

V. ALGORITHM DESCRIPTIONS 

1. The trivial repartition algorithm 

A first trivial algorithm will be used to spot the 

issue raised by the ray tracing parallelisation and 

will be referred to for the coming improved 

algorithm evaluations. 

The image is uniformly split into as many blocks as 

computing resources. The octree is entirely built at 

the beginning of the computation by each node to 

avoid communication during this step. Each node 

hence has the entire model and voxelisation 

information in its local memory; so the computation 

is achieved without communication. The 

computation ends when the workload heaviest block 

is computed. 

The measured efficiencies of the static trivial 

algorithm shows that global computation time gets 

far higher than desirable as the number of nodes 

increases (Figure 1, Figure 5, Figure 9). 

The high load imbalance values confirm the ray 

tracing algorithm irregularity (Figure 2, Figure 6, 

Figure 10). The differences between node 

computation times are significant (they have 

reached 40 seconds for a global execution time of 

120 s), showing an important load imbalance 

between nodes. As limiting the computation time 

imbalance is a key issue to performance, this will be 

the first problem to address. 

Furthermore the local memory requirement is 

constant and maximum whatever the number of 

nodes is; memory is not distributed at all. The 

memory requirement for each node is the same as 

on the single node of a sequential computer. This 

memory waste is the second point to improve. 

The only positive aspect of this first trivial 

algorithm is that it does not need any 

communication. In fact, the parallel computer rate 

is unacceptable while there is no communication 

overhead. 

2. Improving load-balancing by a dynamic 

distribution of the blocks 

To deal with the irregularity of the ray tracing 

application, a first improvement is to achieve a 

thinner static splitting of the image and a dynamic 

distribution of the blocks. The algorithm is : 

• At the master node 

// let N be the number of processors 

Split_image(block_size) 

// with block_size adjusted to obtain number of  

// blocks >> N 

For i=1..N Assign(a_Block, node(i)) 

// this was the assignment of the first N blocks 

While non_computed_blocks_remain 

Wait_a_job_termination 

Assign(a_new_block, node(requester)) 

End While 

For i=1..N Send(termination_signal, node(i)) 

 

• At each slave node 

Wait_for_a_job(job) 

While not_the_termination_signal 

Compute(job) 

Send(job_termination, master_node) 

Wait_for_a_job(job) 

End While 

This should improve the load balancing, but the 

local memory requirement problem is not addressed 

yet. 
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3. Saving memory and reducing 

computation : the lazy ray tracing 

3.1. The lazy algorithm 

Inside each processor, the algorithm is the 

following : 

Propagate(rays) 

For each rays 

Intersection(ray,octree_root) 

If (intersection<>nil) 

Apply Snell Descartes laws to determine 

secondary rays 

If (secondary_rays<>nil) 

Propagate(secondary_rays) 

End if 

End if 

End for 

End Propagate. 

The algorithm of the lazy recursive function 

Intersection is : 

Intersection(ray,octree_elt) 

// First step : Actions on the octree element if it  

// is a leaf 

If is_a_leaf(octree_elt) 

If boundary_conditions(octree_elt) 

// there is no need to explore deeper 

If (object_list(octree_elt)<>nil) 

// the element contains surfaces 

Flag_as_terminal_node(octree_elt); 

Else 

// the element contains no surface 

Flag_as_empty(octree_elt); 

End if 

Else 

// deeper exploration is necessary 

Flag_as_node(octree_elt); 

Create_leaf_sons(octree_elt); 

End if 

End if 

// Second step : Action to take according to the 

// flag of the element as it can no more be a leaf 

Case 

is_empty(octree_elt) : 

return(nil); 

is_a_node(octree_elt) : 

if is_a_terminal_node 

compute_intersection; 

else 

return merge( 
if hit_by_ray Intersection(ray,son1(octree_elt) else 

nil, 

if hit_by_ray Intersection(ray,son2(octree_elt) else 

nil, 

if hit_by_ray Intersection(ray,son3(octree_elt) else 

nil, 

if hit_by_ray Intersection(ray,son4(octree_elt) else 

nil, 

if hit_by_ray Intersection(ray,son5(octree_elt) else 

nil, 

if hit_by_ray Intersection(ray,son6(octree_elt) else 

nil, 

if hit_by_ray Intersection(ray,son7(octree_elt) else 

nil, 

if hit_by_ray Intersection(ray,son8(octree_elt) else 

nil) 

End if 

End Case 

End Intersection 

This algorithm shows the following properties: first, 

a child node is evaluated only if it contains 

necessary data for the computation; then, the node 

evaluation results is definitively stored in the octree 

and will be reused for neighbor ray computation. 

Thereby, the algorithm exploits spatial ray 

coherence. 
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The main drawback of the algorithm is the 

remaining data replication. Although it is reduced 

by a proximity support in the assigned ray choice 

for each node, some rays assigned to different nodes 

may need common voxel evaluation and generate 

data duplication. This cost is to be evaluated as it 

strongly relies on the considered application. 

3.2. Static splitting, dynamic distribution 

algorithm 

The hybrid algorithm uses the repartition algorithm 

introduced in section V.2, a nearest new block 

choice and a static image splitting. It has been 

tested with and without implementing the lazy 

evaluation; it leads to the following results : 

Efficiencies are better than the previous one 

especially when the number of nodes increases, lazy 

evaluation does not significantly interfere on 

performance (Figure 1, Figure 5, Figure 9). 

The repartition quality of the hybrid algorithm 

evolves linearly. Its values are always lower than 

those of the trivial algorithm. The two versions 

obtain the same results. (Figure 2, Figure 6, 

Figure 10). 

The local memory requirement is the first point 

where laziness has a significant impact. The non 

lazy version obtains the same results as the first 

trivial algorithm with a constant and maximal 

memory requirement for all test configurations. On 

the opposite, the lazy algorithm offers decreasing 

memory requirements as the number of nodes 

increases. The memory requirement decreasing rate 

is about 20% each time the number of nodes 

doubles (Figure 3, Figure 7, Figure 11). The 

memory is now distributed among the computing 

nodes thanks to the laziness added to the base 

algorithm. On the last gen8 test an important 

memory requirement reduction can be observed on 

the sequential lazy execution. It is due to useless 

parts of the octree evaluated by the classic algorithm 

and not by the lazy algorithm (Figure 11). 

The introduced communication is correct for gen8 

test (Figure 12), just acceptable for teapot12 test 

(Figure 4) and clearly too high for tetra9 test 

(Figure 8). The results are the same on both 

versions of the hybrid algorithm. 

Results indicate a sensible execution time 

improvement with both versions of the hybrid 

algorithm and a significant memory saving with the 

lazy version. Lazy evaluation solution always leads 

to memory requirements and execution time 

improvements on parallel machines but also on 

sequential machines when the computed scene 

contains hidden parts. 

4. Dynamic image splitting 

However, using both dynamic splitting and dynamic 

repartition improves data and computation locality. 

Moreover it may reduce the data replication too. 

Computing a single large block instead of the four 

smaller blocks that compose it, ensures this 

computation is done by a single node. It really takes 

advantage of the locality and it also fully uses the 

original sequential algorithm efficiency. Moreover it 

reduces the number of needed messages. But it may 

involve a greater execution time imbalance between 

nodes being assigned blocks that generates very 

different workloads. 

On the opposite, the use of small blocks often 

implies more data replication and generates more 

messages. But it induces very close execution times 

which means load balancing improvement. 

To take advantage of both large and small blocks 

the following dynamic splitting and dynamic 

repartition algorithm is used : 

// let N be the number of processors 

// let NS be the number of different block sizes 

Dynamic_repartition() 

// first splitting/repartition 

Block_side = Image_side / N; 

Split(Image,Block_side); // N*N blocks created 

Distribute N blocks 

// start the loop 

While it_stays_blocks_to_compute 

// wait and count for achieved blocks 

Wait_for_a_job_termination; 

Assign(a_new_block, requesting_node); 

Waited_blocks = Waited_blocks - 1; 

 

// if conditions true prepare next block size 

If (Waited_blocks = 0 and Block_side ≥ 
minimum_side) 

Then 

// prepare the next block size 

Block_side = Block_side / reduction_factor; 

Split(Image,Block_side); 

 

// schedule the re-split 

Blocks_before_resplitting = blocks to cover 

 1/NS of the image surface; 

Waited_blocks = Blocks_before_resplitting; 

End if 

End While 

End Dynamic_repartition 

 

The minimum size of a block must be chosen to 

ensure that the communication time for the block 

will never be greater than its computation time; so 

evaluating it remotely would cost more than 

evaluating it locally [HLL96]. 
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An efficiency improvement can be observed in 

particular when the number of node increases 

(Figure 1, Figure 5, Figure 9). Efficiency is almost 

linear with a value of 0.93 on the 16 node 

configuration of teapot12 test (Figure 1). 

The load imbalance values are a bit lower than 

previous ones when the number of node increases. 

Therefore starting he computation with larger 

blocks do not impact the load-balancing (Figure 2, 

Figure 6, Figure 10). 

The memory requirements are the same as those of 

the lazy hybrid algorithm (Figure 3, Figure 7, 

Figure 11). 

Communication ratio have been hardly reduced 

(Figure 4, Figure 8, Figure 12). 

VI. RESULTS 

The presented results correspond to the three 

following scenes (Table 1 :Test scenes). 

Sequential computation 

time Scenes 

Model 

size 

(in MB) 

Number of 

surfaces 
Picture size 

Non lazy Lazy 

Teapot12 1.19 9,408 2048x2048 220 s 163 s 

Tetra9 18.24 262,144 2048x2048 194 s 155 s 

Gen8 26.21 786,438 1024x1024 793 s 201 s 

Table 1 :Test scenes 

The two first scenes are part of the well known 

SPD, the last one is proprietary. Due to paper size 

limitation only three tests are presented. Results are 

presented in the following pages. 

VII. CONCLUSION 

Efficient parallel solutions on workstation networks 

must reduce communications to the minimum, as 

they constitute a very important overhead. However 

this reduction implies more local data knowledge 

and thus more local memory requirements. The use 

of a lazy evaluation base algorithm leads to a 

natural memory repartition among the computing 

nodes and implies a lot less communications while 

computing complex scenes with a high level of 

performance. 

Lazy evaluation benefit might be contested because 

it can be annihilated in the case of scene with 

reflecting surfaces imposing a lot of rays to cross 

the entire scene. However, even in the worst 

theoretical case in which the whole data set would 

be needed on each node, the lazy evaluation would 

not perform worse then classical solution but would 

be absolutely equivalent to it. 
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Figure 1 : Teapot12 algorithm efficiencies 
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Figure 2 : Teapot12 algorithm load imbalance ratio 
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Figure 3 : Teapot12 local memory requirement Figure 4 : Teapot12 communication ratio 
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Figure 5 : Tetra9 algorithm efficiencies 

0

50

100

150

200

250

300

2 4 6 8 10 12 14 16

Lo
ad

 im
ba

la
nc

e 
(in

 %
)

Number of stations

Dynamic Algorithm with laziness
Hybrid Algorithm with Laziness

Hybrid Algorithm without Laziness
Static Algorithm without Laziness

 

Figure 6 : Tetra9 algorithm load imbalance ratio 
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Figure 7 : Tetra9 local memory requirement 
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Figure 8 : Tetra9 communication ratio 
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Figure 9 : Gen8 algorithm efficiencies 
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Figure 10 : Gen8 algorithm load imbalance ratio 
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Figure 11 : Gen8 local memory requirement 
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Figure 12 : Gen8 communication ratio 
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